# Revealing Patterns Using Descriptive Statistics

Descriptive statistics, not surprisingly, "describe" data that have been collected. Commonly used descriptive statistics include frequency counts, ranges (high and low scores or values), means, modes, median scores, and standard deviations. Two concepts are essential to understanding descriptive statistics: *variables* and *distributions*.

### Variables

Statistics are used to explore numerical data (Levin, 1991). Numerical data are observations which are recorded in the form of numbers (Runyon, 1976). Numbers are variable in nature, which means that quantities vary according to certain factors. For examples, when analyzing the grades on student essays, scores will vary for reasons such as the writing ability of the student, the students' knowledge of the subject, and so on. In statistics, these reasons are called variables. Variables are divided into three basic categories:

#### Nominal Variables

Nominal variables classify data into categories. This process involves labeling categories and then counting frequencies of occurrence (Runyon, 1991). A researcher might wish to compare essay grades between male and female students. Tabulations would be compiled using the categories "male" and "female." Sex would be a nominal variable. Note that the categories themselves are not quantified. Maleness or femaleness are not numerical in nature, rather the frequencies of each category results in data that is quantified -- 11 males and 9 females.

#### Ordinal Variables

Ordinal variables order (or rank) data in terms of degree. Ordinal variables do not establish the numeric difference between data points. They indicate only that one data point is ranked higher or lower than another (Runyon, 1991). For instance, a researcher might want to analyze the letter grades given on student essays. An A would be ranked higher than a B, and a B higher than a C. However, the difference between these data points, the precise distance between an A and a B, is not defined. Letter grades are an example of an ordinal variable.

#### Interval Variables

Interval variables score data. Thus the order of data is known as well as the precise numeric distance between data points (Runyon, 1991). A researcher might analyze the actual percentage scores of the essays, assuming that percentage scores are given by the instructor. A score of 98 (A) ranks higher than a score of 87 (B), which ranks higher than a score of 72 (C). Not only is the order of these three data points known, but so is the exact distance between them -- 11 percentage points between the first two, 15 percentage points between the second two and 26 percentage points between the first and last data points.

### Distributions

A distribution is a graphic representation of data. The line formed by connecting data points is called a frequency distribution. This line may take many shapes. The single most important shape is that of the bell-shaped curve, which characterizes the distribution as "normal." A perfectly normal distribution is only a theoretical ideal. This ideal, however, is an essential ingredient in statistical decision-making (Levin, 1991). A perfectly normal distribution is a mathematical construct which carries with it certain mathematical properties helpful in describing the attributes of the distribution. Although frequency distribution based on actual data points seldom, if ever, completely matches a perfectly normal distribution, a frequency distribution often can approach such a normal curve.

The closer a frequency distribution resembles a normal curve, the more probable that the distribution maintains those same mathematical properties as the normal curve. This is an important factor in describing the characteristics of a frequency distribution. As a frequency distribution approaches a normal curve, generalizations about the data set from which the distribution was derived can be made with greater certainty. And it is this notion of generalizability upon which statistics is founded. It is important to remember that not all frequency distributions approach a normal curve. Some are skewed. When a frequency distribution is skewed, the characteristics inherent to a normal curve no longer apply.